Here you will get the program for N sovereigns issue in C utilizing backtracking.
N Queens Problem is a popular riddle where n-sovereigns are to be set on a nxn chessboard with the end goal that no two sovereigns are in a similar line, section or corner to corner.
In this instructional exercise, I am sharing the C program to discover an answer for N Queens issue utilizing backtracking. Beneath activity shows the answer for 8 sovereigns issue utilizing backtracking.
Program for N Queens Problem in C Using Backtracking
#include<stdio.h>
#include<math.h>
int board[20],count;
int main()
{
int n,i,j;
void queen(int row,int n);
printf(" - N Queens Problem Using Backtracking -");
printf("\n\nEnter number of Queens:");
scanf("%d",&n);
queen(1,n);
return 0;
}
//function for printing the solution
void print(int n)
{
int i,j;
printf("\n\nSolution %d:\n\n",++count);
for(i=1;i<=n;++i)
printf("\t%d",i);
for(i=1;i<=n;++i)
{
printf("\n\n%d",i);
for(j=1;j<=n;++j) //for nxn board
{
if(board[i]==j)
printf("\tQ"); //queen at i,j position
else
printf("\t-"); //empty slot
}
}
}
/*funtion to check conflicts
If no conflict for desired postion returns 1 otherwise returns 0*/
int place(int row,int column)
{
int i;
for(i=1;i<=row-1;++i)
{
//checking column and digonal conflicts
if(board[i]==column)
return 0;
else
if(abs(board[i]-column)==abs(i-row))
return 0;
}
return 1; //no conflicts
}
//function to check for proper positioning of queen
void queen(int row,int n)
{
int column;
for(column=1;column<=n;++column)
{
if(place(row,column))
{
board[row]=column; //no conflicts so place queen
if(row==n) //dead end
print(n); //printing the board configuration
else //try queen with next position
queen(row+1,n);
}
}
}
Output
Remark beneath on the off chance that you discovered anything erroneous in above N sovereigns issue in C.