Series 0, 1, 1, 2, 3, 5, 8, 13, 21 . . . . . . . is a** Fibonacci series**. In Fibonacci series, each term is the sum of the two going before terms.

The **C **and **C++** program for Fibonacci series utilizing recursion is given beneath.

**C Program**

```
#include<stdio.h>
int fibonacci(int n)
{
if((n==1)||(n==0))
{
return(n);
}
else
{
return(fibonacci(n-1)+fibonacci(n-2));
}
}
int main()
{
int n,i=0;
printf("Input the number of terms for Fibonacci Series:");
scanf("%d",&n);
printf("\nFibonnaci Series is as follows\n");
while(i<n)
{
printf("%d ",fibonacci(i));
i++;
}
return 0;
}
```

**C++ Program**

```
#include<iostream>
using namespace std;
int fibonacci(int n)
{
if((n==1)||(n==0))
{
return(n);
}
else
{
return(fibonacci(n-1)+fibonacci(n-2));
}
}
int main()
{
int n,i=0;
cout<<"Input the number of terms for Fibonacci Series:";
cin>>n;
cout<<"\nFibonacci Series is as follows\n";
while(i<n)
{
cout<<" "<<fibonacci(i);
i++;
}
return 0;
}
```

**Output**