In this program, we will utilize recursion and Euclid’s calculation to discover the most prominent normal divisor of two numbers.
The meaning of Euclid’s calculation is as per the following:
C Program
#include<stdio.h>
int gcd(int n,int m)
{
if((n>=m)&&((n%m)==0))
return(m);
else
gcd(m,(n%m));
}
int main()
{
int n,m,result;
printf("Input the first integer number:");
scanf("%d",&n);
printf("Input the second integer number:");
scanf("%d",&m);
result=gcd(n,m);
printf("nGCD of %d and %d is %d",n,m,result);
return 0;
}
C++ Program
#include<iostream>
#include<cstdlib>
using namespace std;
int gcd(int n,int m)
{
if((n>=m)&&((n%m)==0))
return(m);
else
gcd(m,(n%m));
}
int main()
{
int n,m,result;
cout<<"Input the first integer number:";
cin>>n;
cout<<"Input the second integer number:";
cin>>m;
result=gcd(n,m);
cout<<"nGCD of "<<n<<" and "<<m<<" is "<<result;
return 0;
}
Output